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VI I RANE BEHAVIOR: POLAR PARAMETM

l- The paraboloidal shell will, under the proper circum-

stances, prefer to carry the applied loads by the development of the force

resultants Nta rather than by the development of the transverse shear

resultants (t and the bending moment resultants, Mo. Such behavior is

commonly called membrane behavior although the term Aomentlessa

behavior is the more connotative. The membrane or momentless behavior

will be the dominant mode of behavior when either the bending moments

induced by the loads are negligibly small or whenever the flexural

(bending) rigidity of the shell is sufficiently small so that the shell

will defom without inducing appreciable bending moments. In this chapter,

various solutions of the membrane equations as written in terms of the

polar parameters will be presented. The so-called membrane equations are

easily obtained by omitting the Mo, QQ ,andAp terms from the equations

which have been derived in the previous sections
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6.1 THE GOVERNING EQUATIONS

The equations which govern the membrane behavior of a

paraboloidal shell will be summarized in this section.

The strain-displacement relationa (see equations 3.4.19,

3.4.20, 3.h.21):

Er =Zf+-'a y [ ) 6.1.1

40- + _r W6.1.2

0 ? U80 U• I bur*

The equations of equilibrium (see equations 4.4.1.14, 4.4.1.15, 4.4.1.16):

Y + /+(r) 1  -' + Nr-Ne+Zfv r I+') Pr -O,

6.1.4

ae +2 rereA77i+2 -- + (1) P N 0 9

6.1.5



+ I Nr+ No +Zf,[+(y)2 P2 , = 0 6.1.6

The stress-strain relations (see equations 5.2.7, 5.2.8, 5.2.9)

Nr E (,Er + 6)6.1.7

I- /2

Eh

I-VI(6 + ea).6.1.9

There are nine equations for the nine Imknon quantities:

(o. 0 a 0 Q0 W N N N

re J ), Wa r r* .

6.2 THE BOUNDARY CONDITIONS

We will be concerned in the main with a paraboloidal shell

which is bounded by one or two boundaries located at = 6, and 1- 1, , i.e.,

the boundaries are circles of latitutde. These possibilities are shown

in figure 6.2.1.

3



BOUNDARY '2

BOUNDARY

Figure 6.2.1

Note that the case where the shell is closed at the apex is not

excluded here as 61 can well be zero.

The system of differential equations for determining the displace-

ments is a second order system (cf. 6.1.1, 6.1.2 and 6.1.3). However,

the stress resultants entering into the right hand sides of these

differential equations are themselves solutions of a second order system

(cf. 6.1.4,, 6.1.5 and 6.1.6). Hence the displacements in the membrane

theory satisfy a fourth order system of equations. Correspondingly, two

independent boundary conditions must be given at each of the edges of

the shell. It is clear from the equations themselves that half of these

conditions must be given in terms of the displacements while the remaining

conditions can be given either in terms of the displacements or the stress

resultants.

It should be observed that the number of boundswy condLons hich can be
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satisfied in the membrane theory is only baif of that satisfied in the

general theory. This phenomenon stems from the basic assumption in

membrane theory that the shell has no bending stiffness in vhich case the

unknowns M.i , Q, , and * need not be considered.

In the case of a shell vith both edges restrained against tangential

motion, the boundary conditions are all given in terms of the displacements.

They are

u(,, e)= O, 6.2.1

u° (r,, e) o, 6.2.2

4 (I,, e) =0 6.2.3
U. i= ) = O 6.2.4

(I ( 1 e)= 0.

On the other hand, the boundary conditions for a shell with one edge

free, 1, and the other edge, , restrained against tangential motion

are

Nr (Y,, e) 0) 6.2.5

N.. (v,, 0) =  6.2.6

U, 0 ( '8 ) 0 , 6.2,.7

(U ( , e) 0. 6.2.8

U e 5



If the shell is closed at the apex, the usual procedure is to require

that the stress resultants be finite there.

It will be shown in a subsequent section that, under the conditions

enumerated in equations 6.2.1 to 6.2.8, the shell exhibits no in-

extensional deformations (i.e. deformations without straining the

middle surface of the shell). The corresponding membrane analysis will

be simplified considerably.

6.3 THE LOADS DUE TO GRAVITY

A type of loading which is of great interest is that

which is caused by the dead weight of the shell, i.e., the so-called

gravity loading. In this section we will express the loading intensities

Pr ,. , n in terms of the gravity loading. Consider the case

where the shell has rotated from its face-up position (see figure 6.3.1)

though an angle

6



~3

y3

12

lyl P \ 2

Figure 6.3.1

The n axes are fixed in space such that the gravity axis is in the

negative y direction. Without loss of generality, we assume the shell

to have rotated about its own y axis which coincides with the "

axis. Let the load intensity vector due to the force of gravity be

denoted by p . Then

6.3.1
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where po is the weight density of the material in the shell (units of

pounds per unit volume), h is the thickness, and i 3  is the unit vector

in the y3 direction. With respect to the coordinates yn which are

fixed in the shell, we have the simple relationship

- sin f +  cos 6.3.2

where( 2  and i3 are the unit vectors associated with y2 and y. Thus

F" /ooh sin llrTt-Poh cos 3 . 6.3.3

In the shell coordinates (see equation 4.4.1.19) the load intensity

vector is expressed in terms of the coordinates on the middle surface of

the shell.

I're+ Pe+ ri 6 .3 -It

where

j V+-Y) [in 4i8 6.3.5

8



Pa P p 0 h cos G sin o, 6.3.6

Pns'" I sinG sin -Cos ] * 6.3.7

In obtaining equations 6.3.5, 6.3.6, and 6.3.7, we have made use of the

relations connecting the bass vectors n , , d , ' 3 '

(see equations 2.1.8, 2.1.9, 2.1.14a).

6.4 THE AXI-SYMOETRIC MEMBRANE BEHAVIOR: GRAVITY LOADS

If the structural configuration of the shell is axi-symtric

and if the loading is also axi-symmetric as in the case of the loading

due to gravity, then the membrane equations become further siwlified.

The axi-symmetric problem is characterised by

a-- a 0, 6.4.1

s = O, 6.4.2

Pe Z 0 6.4.3

and the remaining partial derivative becomes an ordinary derivative, A

For the validity of this statement and the uniqueness of the solution

9



soght, readers are referred to section 6.6.

Under these restrictions the strain-displacement relations become

(see equations 6.1.1, 6.1.2, 6.1.3):

0 !U 0u w

E,- 2fIW y) Ir 2f r)t 3/2 6.4.4

0Ur. w
2f-j+jI 2 I+_( 6.14.5;

The equations of equilibrium also become simplified (see equations

6.1.14, 6.1.!;, 6.1.6):

U _rO w 6.4.6

+ - N" fT11+()2 P

+~ = 6.4.7

I Nr + No+ fVI+(/)i Ph* 06.4.7

The pertinent stress-strain relations (see 6.1.7, 6.1.8, 6.1.9)

10



are the following:

Eh r o

Nr E j---- (E +v Er), 6.4.8

The loading which is of interest is caused by the dead

weight of the shell. From section 6.3 we have

6.4.1oPr=  (1

P e 0 0 , 6 .4. .11

Pn 1+( / 6.11.1-2

With the introduction of the loading terms (equations

6.L.1o, 6 .L.12) the two equilibrium equations can be combined into a

single ordinary differential equation:

| 11



--- +r T + -[1(,)]] 2fhp (r+t) 6.4.13

The formal solution of the differential equation (6.4.13)

can be expressed as

fph + 2+ C6.
Nr 6 4A .1h

where C is a constant to be determined by the boundary conditions.

Note that the differential equation (6-4.13) possesses a regular singu-

larity at the apex, X= 0 . Thus the solution, as it is presented in

equation 6.4.14, is valid only for > 0 , i.e., for all IZ S where I>0

can be arbitrarily small. The case where the shell is closed at the apex

will be discussed later. However, we may avoid the difficulties associa-

ted with the singularity by constructing the paraboloidal shell with a

hole at the apex.

The force resultant N 6 is obtained by substituting

12



ecuation 6.4.14 into the equilibrium equation (6.4.7):

N9 N(1) =2f 0 h I- [(,+())/2+CI} 6. h 15

We will require the displacements Uo ,U oand W not

only because the deformations are of primary interest but also because

all the boundary conditions may be prescribed in terms of them. By

solving equations 6.4.8 and 6.b.9 for Ea and E 0 , and then introducing

equations 6.b.1h and 6.L.15, the strains can be determined:

E+ 2 ( + +C4 (I + 0 . + 1 6.L.16

3E- 2fp X+2 ______(;)2 (j 1

e 3E 
__)2 L_ 1 )7 1 1 6

The strain-displacement relations (6.4.6) can be re-

arranged to read

0
Ur

N, + (1)2e 6.4.18

13



and substituted into the other strain-displacement relation (6. 4 .4 ) to

yield the differential equation for U .

dur - -Ur 6.L.19.~) I v~

If the shell is not closed at the apex, the solution to the differential

equation (6.4.19) is

3EV'TiiiZ 1 +y ~') ~~*~

The introduction of 6.4.20 into 6.4.18 yields

4 11 I n I -, -2 + + 0-  + ( w )

+4VT ,12 (1/)] + c2}. 6.4.21

Several different combinations of boundary conditions

will be considered and explicit evaluations as well as numerical cal-

culations will be made. These will be designated as Case 6.4.1,

14



case 6.4.2 and Case 6.4.3. The numerical results will be presented in

terms of the non-dimensionslized quantities

N 2fo, k 6.4.23

Nr 6.4.23

. w E
w 4f 2 o 6.4.25

The choice of parameters for non-dimensionalization is obvious from

equations (6.4.14), (6.4.15), (6.4.20) and (6.4.21).

15



6.4.1 BOTH EDGES RESTRAINED IN THE TANGENTIAL DIRECTIONS

The boundary conditions for a shell with both edges

restrained in the tangential directions are specified by

U ( ,) 01 6.4.1.1

uor (rj) = o 6.4.1.2

where f, and 19 are the boundaries of the shell (see figure 6.2.1) and

are chosen such that

< 2 6.4.1.3

The solution for C, and C2 can be put into the form

8 (1r) z - B (' 2 )rc,=A (11) 11 - A (11) r,6 ..

B (r2)A(r,) - B(11) A(r2)
C2 - A (,) r' - A %) r, 6.h.1.5

16



where

A fil i,+- r, rT 21 + j r, mn( 4 4)+ 4iT~a

6.4.1.6

1) A,('"- ri En 1')-A 1 (r) 3 -A 3 (YO •

6.4.1.7

The possibility that the determinant ,

L - A (Y, Y, - A (r,) 1, 6.4.1.8

in equations (6..1.4) and (6.4.1.5) vanishes for s aw and 91 should

be investigated. Physically this is implausible as it would mean some

sort of ins ability. Therefore, one suspects that as a function of ,

the transcendental equation

A= 0 6.4.1.9

for any (fixed) positive 1i has no positive roots which are larger than

It can indeed be verified that A is monotonic and non-zero for all

positive 8.>

There are six separate configurations which have been

analyzed. The results are shown in Figures 6.4.1.1 through 6.4.1.6 which

contain curves of Nr* , N4 and w* as well as tables of values. It can

17



be seen from an examination of the table of values that LL, , the

non-dimensional merido nal displacement, is an order of magnitude smaller

than W and it is for this reason that LCr has not been plotted. The

boundary conditions that both edges are restrained in the tangential

direction means that the shell must deform in the manner shown in

Figure 6.4.1.

13-71- m

n UNLOADED POSITIONh

LOADED POSITION

Figure 6.4.1

The restrained type of boundary conditions for membranes

lead to distortions which at first glance seem peculiar. However, the

boundary condition itself, i.e., the restraint of Lr , is somewhat

unnatural because it would be very difficult to achieve in a practical

situation. Schematically, a set of roller supports as shown in Figure

18



6.4.1 will prevent displacements along a tangent while freely permitt lug

diuplacements along the normal to the surface of the shell.

A table which summrizes the cases studied in 6.4.1.1

* folows:Table 6.4.1.1

Case No. Restrained at Restrained at

6.4.1.1 o.0446 o.62jo

6.4.1.2 o.014 0.625o

6.4.1.3 0.0104 0.384

6.4.1.4 0.3854 o.6250

6.4.1.5 o.0446 0.8035

6.4.1.6 o.0446 1.0267

19
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6.L.2 ONE EDGE FREE AND ONE EDGE RESTRAINED IN THE TANGENTIAL DIRECTION

The boundary conditions for a shell with one edge free

and the other edge restrained in the tangential directions are specified

by

Nr (r,)= 0, 6.4.2.1

U (r) 0 6.b.2.2

where is the coordinate of the free edge and r2 is the edge which is

restrained. The free edge boundary condition, ecuation 6.4.2.1, deter-

mines the constant CI (see equation 6.4.1U):

C1  6.4.2.3

The restraint condition, equation 6.L.2.2, enables us to determine the

remaining constant (see equation 6.h.20):

26



2) F2

-(1-- ) . r2 + Y) (1-0) (r,)2_ I r.4
-r 2 + y2)2 2 _) 4 6.4.2. L

A total of twenty-nine separate cases have been solved.

These represent various combinations of shells with the inner circular

boundary unsupported and the outer circular boundary restrained against

tangential motion. Additionally, there are cases in which the shell is

supported at the inner boundary and is left free at the outer boundary.

The value of N at the free boundary is seen always to

be

6.2.2.5

by examining the equilibrium condition, equation 6.4.7, and the loading

term, equation 6.4.12.

Again, it should be noted that the restrained type of

boundary condition will sometimes yield nonsensical results. Thus,

case 6.4.2.14, in which the shell is supported at an inner radius of

only I - .0104, shows non-dimensionalized displacements of over 2000.

Obviously, the answer, while mathematically correct, is physically un-

realizable. The case has been included as a mathematically interesting

example of the effect of a load concentration.

A table which summarizes the cases studied in this

section follows:

27



Table 6.4.2.1

Case No. Free at W, Restrained at a

6.4.2.1 .0104 .1041

6.4.2.2 .olo4 .052o

6.4.2.3 .004 .2083

6.4.2.4 .0104 .3854

6.4.2.5 .olo4 .4687

6.4.2.6 .o446 .4464

6.4.2.7 .oLo4 .625o

6.4.2.8 .0223 •W62-

6.4.2.9 .o446 .6250

6.4.2.10 .0892 .6250

6.4.2.11 .1785 .6250

6.4.2.12 .1339 .6250

6.4.2.13 .4017 .6250

6.4.2.14 .625o .olo4

6.4.2.15 .6250 .0520

6.4.2.16 .6250 .2085

6.4.2.17 .6250 .54

6.4.2.18 .6250 .4687

6.4.2.19 .oo4 .9990

6.4.2.20 .1785 .8035

6.4.2.21 .1o17 .8035

6.4.2.22 .1785 1.0267

6.4.2.23 .M017 1.0267

6.4.2.24 .8020 .2085

6.4.2.25 .8020 .3854

6.4.2.26 .8020 .4687

6.4.2.27 .9990 .3854
6.4.2.28 1.0000 .4687

6.4.2.29 .004 .8020
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6.4.3 SHELL CLOSED AT THE APEX

The case in which the shell is closed at the apex is best

handled by considering the equilibrium of a portion of the shell bounded

by the apex and a circle of latitude ( I -constant). This is illustrated

in figure 6.4.3.1.
0.6 - ~Nr ,

O.~ r 2fp h Case 6. 4. 3.1 Axi-Symmetric Gravity
5 ~2fpoh Closed at Apex

N 9
N___ Restrained '2 "0. 2678

0.4 2fpoh
Y N, N Ur* W

0.3- 0 .500 .500 0 ---

0.2 0.0446 .500 .500 -0 0010 -0.374

0.0669 .501 .500 -0. 0015 -0.374
0.1 0.0892 .502 .500 -0.0019 -0.373

I I I I 0.1116 .504 .5n1 -M0022 -0.372

0.1 0.2 0.3 0.4 0.5 0.6 0.1339 .506 .502 -a.002 -1.371

-010.1562 .509 .502 -0.0025 -0.370-0.1 -

0.1785 .511 .503 -0.0024 -0.36;
-0.2 0.2008 .515 .504 -0.0021 -0. 368

0.2232 .518 .505 -0. 0016 -0. 366
-0.3 Ehw 0.2455 0.522 .507 -0.0009 -0.364

0 4f2po 0.2678 .526 .508 0.000 -0.363
-0.4

Figure 6.4.3.1

The force equilibrium equation of the portion of the shell

shown in figure 6.4.3.1 is written as

Nr sin 2 /2"?-f rde -fjr tfp"47 jidI*.r'e

6.L.3.1

This results in
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t4 0 6 4 + -( { 25/L}

6.4.3.2

At the apex, r-o , equation 6.4.3.2 yields an indeterminate value for

Nr (o) since both the numerator and denominator become zero. The applica-

tion of L'Hospital's Rule to equation 6.4.3.2 yields

Nr (o) = fpoh . 6.4.3.3

If equation 6.4.3.2 is compared to equation 6.4.14 then it is clear that

C1 = -. 6.3.

i f the upper boundary (r?) of the shell is restrained in the

tangential direction such that

U (r-2 )- o, 6.43.5

then as in case 64.2

59



(I +') +in !2~C ~ 7(r 2)2  r

+'V)c in + 1) ) 41

6. .3.6

Note that U r0 () will also be finite at 70 by L tlfospital's rule.

Six cases have been solved for the shell which is closed

at the apex. The value of w* at the apex ( -0 ) cannot be calculated

directly from the solution and hence has not been included. However,

it is very easy to extrapolate values of w* near the apex to obtain the

value at the apex.

The following table lists the outer boundary of the cases

which have been considered.

Table 6.4.3.1

Case Restrained at

6.4.3.1 .2678

6.4.3.2 .3854

6.4.3.3 .5357

6.4.3.4 .6250

6.4.3.5 .8035

6.4.3.6 1.o267
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6.5 THE AXI-SYMMETRIC MEMBRANE BEHAVIOR: UNIFORM PRESSURE DISTRIBUTION

If the paraboloidal shell is subjected only to a uniformly

distributed pressure clo , then the equilibrium equations assume the form

(see equations 6.4.6, 6.4.7)

d NrY-- Nr "NeO" , 6.5.1

Nr~ + N9 = -2f -1 -(r)2 10 6.5.2

where it should be noted that p. has been set equal to q 0 . The

differential equation for N p becomes (see equation 6.4.13)

dr+ Nr [+ = - 2 q 0 * 6.5.3

The solution to this ordinary differential equation is

Nr =qof + -(r) 2 + ()2 CI 6.5.)4

The hoop force resultant is obtained by substituting
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equation 6.5.L into equation 6.5.2. There results

N of 1 +2 (M 2 + C
6.5.5

The expressions for the strains are

o I+o Y t (2_)()2_ I +V+ V (,)2 1}
6.5.6

The differential equation for the meridianal displacements

becomes (see equation 6.4.19)
u 0 .0 2

jr Ur 2- lo

dr f[,+()] - Eh [+(n1 ]

+[ + 2 (,+Z,(+ +).c, 6 6.5.7

The solution for Ur is

o 24.o2 -- ) qO , v+ uZ)¥ [ (+)

Eh o 3 +21 -r

(i+v)r in ( + 41+  ')T ]+ 1 6.5.8
-/- I-Ir li- + ffjjrjzI

In order to obtain the normal displacement we again make
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use of equation 6.4,18. There results

24 2. 1~-l4 w ~, i1i___

For this case wherein the load is a uniform pressure, the

non-dimensional force-resultants are defined as

* Nr

~Nr
r 2fqO 6.5.10

N 2fq0

6.511

and the non-dimensional displacements are defined as

* Ehur-

Ur- 4 .f2qo 6.5.12

rEhw
W= 4 f2qO 6.5.13
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6.5.1 Case I BOTH EDGES RESTRAINED IN THE TANGENTIAL DIRECTIONS

The constants for the case of a shell which is restrained

at both edges (see section 6.4.1) are as follows:

D(r,) 5( 4) - D(r) B(,)
C1 = A() B( 1z) - A(r2) B(Y1 ) ' 6.5.1.1

A(11) D(r 2) - A(r 2 ) D(r,)
A( 1 ) b (12) - A (1z) B (1) 6.5.1.2

where

A(,i (I +i V, ) l. (I +,V) (1+)

(1j) -2 In ( i1 6.5.1.3

S (6.5.1.4

(2u-1)(2v~z)
D - 3 3 6.5.1.5

and r1 , 72 are the boundaries which are restrained. Again the determinant

A- A( 1 ) 5(4)- A(9,) 5( t) 6.5.1.6

does not vanish for all positive 5 , , ( >' )*
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Six different sizes of shells have been analyzed in this

section. It is interesting to note that the largest displacement occurs

at the outer boundary. Aain, the explanation lies in the restricted

type of boundary condition which accompanies membrane behavior (see

Section 6.4.1 and Figure 6.4.1). The outer portion of the shell, in

order to preserve U,,-O at the boundary, must open up somewhat like a

flower in order to accomnodate the strains developed by the loads. It is

this "opening-up" which induces the larger W * displacement.

The six cases are summarized in the following table:

Table 6.5.1.1

Case Restrained at Restrained at 4
.o46 .6250

6.5.1.2 .010 .3854
6.5.1.3 .54 .6249

6.5.1.4 .010 .3854
6.5.1.5 .0W .8035

6.5.1.6 .o46 1.o267
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6.5.2 ONE EDGE FREE AND ONE EDGE RESTRAINED IN THE TANGENTIAL DIRECTION

We will specify the free edge to be Yj , and 12. to be the

restrained edge (see section 6.4.2). Then the constants are as follows:

c, 7- 6.5.2.1

C( o+ +V )  1+4+ (R71 + (0+V)

- F y2 ) 3 2 (14' + i 6.5.2.2
[3 3 1 J

Twenty-three different size shells have been analyzed in

this section. A small hole, while affecting the distribution of N* and

N* , does not significantly affect the displacement W* (compare cases

6.4.1.1 and 6.5.2.5). The discussion of W * in the previous section also

applies for the cases in this section where the free boundary is the inner

radius. For the cases where the shell is supported at the inner radius

and is free at the outer boundary (see e.g., case 6.5.2.12), the W*

displacements are larger at the support. Again, this is somewhat contrary

to one's intuition. The explanation is similar to that advanced in the

previous sections; the larger strains enerated atthe supported boundary

can be accomnodated with the restriction of ur a 0 only by large values
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of the normal displacement. Note also (see case 6.4.2.12) that the

tangential displacement becomes appreciable if the free boundary is the

outer radius of the shell.

A list summarizing the cases which have been studied is

contained in Table 6.5.2.1.

Table 6.5.2.1

Case Free at Restrained at

6.5.2.1 .0223 .6249

6.5.2.2 .0892 .625o

6.5.2.3 .1339 .6250

6.5.2.4 .1785 .625o

6.5.2.5 .o446 .625o

6.5.2.6 .0104 .3854

6.5.2.7 .625o .3854

6.5.2.8 .1785 .803
6.5.2.9 .417 .80

6.5.2.10 .1785 1.o267

6.5.2.11 .4017 1.0267

6.5.2.12 .80o0 .2083

6.5.2.13 .8020 .3854

6.5.2.14 .8020 .4687

6.5.2.15 .9990 .5854

6.5.2.16 i.oooo .4687

6.5.2.17 .olo4 .104l

6.5.2.18 .625o .2085

6.5.2.19 .0lo4 .2085

6.5.2.20 .0104 .4687

6.-5.2.21 .0104 .8020

6.5.2.22 .olo4 .9990

6.5.2.23 .6250 .0520
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6.5.3 SHELL CLOSED AT THE APEX

If the shell is closed at the apex, i.e., the shell

"begins" at r- 0 , then in order for the force resultants to remain

finite at 1=O (see equation 6.5.4) , we must have

C,= 0.
6.5.3.1

Then, if the edge, V2 , is restrained against tangential

displacement, the constant C2 is given by the expression

C2 Z 3 2+ ( 2 V+ 1). 6.5.3.2

Six different sizes of shells have been analyzed. It is

interesting to note that the presence of a moderate size hole at the

apex of a shell has very little influence on the normal displacements

even though the distributions of the force resultants are appreciably

different (compare, e.g., cases 6.5.1.1, 6.5.2.5, 6.5.3.1).

A list of the cases which have been analyzed is contained

in Table 6.5.3.1
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Table 6.5.3.1

Case Restrained at 62

6.5.3.1 .625o

6.5.3.2 .38514
6.5-3-3.5357

6..5.3.4 .2678
6-5-3.5.8o35

6.5-3.61.0267
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6.6 THE ASYMMETRIC MEMBRANE BEHAVIOR: GRAVITY LOADS

We now turn to the more difficult task of calculating the

behavior of the paraboloidal shell of revolution under its own dead

weight in the more general case when the axis of the paraboloid does not

coincide with the axis of gravity (see figure 6.4.1). This means we must

deal with the full set of membrane equations, 6.1.1 through 6.1.9, in

which the loads are prescribed by equations 6.3.5, 6.3.6, and 6.3.7.

As a result of the closed character of the shell in the

circumferential direction, the surface loading as well as the edge load-

ing must be periodic functions of the angle Q with a period of 21

(see equations 6.3.5, 6.3.6, and 6.3.7). Therefore we have as eigen-

functions the set of trigonometric functions cosn0 andsin ne for n-O,

1, 2, ---. It is well known, in the elementary theory of Fourier Series,

that this set of eigenfunctions is complete. As Nr , N9, and Wr. are

sufficiently smooth, the usual expansion theorem applies. 2 0 ' 21 Thus we

can write

m1



Nr(1,0) - ao(I)+Z, [an(W) sin n9+dn() Cos n8], 6.6.1

N9(498) = bo (W+ E [b() sin no+ en(l) cos nO], 6.6.2

Nre(40)- f()+, [f,,m (n ) sin nO +c (1) cos 6.6.3

Substitution of these expressions into equations 6.1.4 through 6.1.6 and

with the loads given by equations 6.3.5, 6.3.6, 6.3.7 yields the follow-

ing equations (primes indicate differentiation with respect to 1 ):

-b+ bo 2ph COS f 2 6.6.4

1+ j-)2 + bo C OfpSh COS 0, 1.

6.6.5

f'o +2f 0  =0 6.6.6

.12



+ l 41- +(4t) -I, 2fjooh sin fil q, 6.6.7

Itd'+d 1+4-T )2  f ,-w 2o, 6.6.8

If 1'+ f1 - e 1 +(rT) =o 6.6.9

r Cl'+ 2 , ' 41F(-2 =-2-poh sin 6.6.10

+ 6, a 2floh sin P {' , 6.6.11

d1 + e =O 6.6.1214.(1)2

IQ,+a - n C n +(0 2 -6 o 6.6.13
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I dI'+ dn + n ,,i-+)W fn-en= 0, 6.6.111

n  =O 6.6.15

YCn' + 2C n + nbn, '/1+T'i: 0, 6.6.16

O:n

T+(1)2 + b n  0, 6.6.17

and

l+li+ n -0. 6.6.18

where n-2,3,,---+1 

+ 06.

With the usual boundary conditions imposed upon the stress

resultants, we show next that equations 6.6.1, 6.6.2, and 6.6.3 must

reduce to

Nr ((9 9) = o( y) + i a (1) Si n 9, 6.6.19
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No ( is ) - b ( )+ b, ( ) 6.6.20

Nre (0,) C () COS 0. 6.6.21

For a shell with a free edge at r -1 1 , the homogeneous

differential equation 6.6.6 for fo implies

[(r)2~j'.O6.6.22

or

o (1)" A- 6.6.23

where A is a constant of integration. But the free edge condition

(see equation 6.2.6) requires the shear resultantNp9 to be zero at r,

We must have (see equation 6.6.3)

A 0. 6.6.24
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Therefore, it follows that

fo (r) - 0. 6.6.25

Next, equations 6.6.8, 6.6.9, and 6.6.12 can be uncoupled to yield the

following relations:

f {)"ad ,'+ 1, )I+ d, 6.6.26

16(1)2 , 6.6.27

d,"+ 1+ (r)') d, + ( rf 1)2J1) d,o M. 6.6.28

Let the most general solution of the homogeneous equation 6.6.28 be

d, (1) - g~h, (')+g2h, (r) 6.6.29

where g1 and g2 are non-zero real constants and hl(and h2 (T) are

linearly independent solutios of equation 6.6.28.

From equation 6.6.26
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4.rd 6.6.30

From the boundary conditions, equations 6.2.5 and 6.2.6, we require

91hi (1)+92 h2() 0 6.6.31

and

4-~1 1+~ 1 ) 0
9,{,,:€,, + 2), ,, +Ih 92. [Y1 + + l ( 11 ) 1,l:o

6.6.32

These latter two equations which are simultaneous homogeneous eauations

for the constants g1 and g2 possess non-trivial solutions only if the

determinant of the coefficients of g, and g2 vanishes.

If the determinant of the coefficients of g, and g2 does

vanish, we have hi (i) [1 h 2 1 )+(I+ 1'+ 0+ h( ]

6.6.33
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or

The left hand side of 6.6-34 is the Wronskian of the functions h1 ()) and

h2 ( Y). The vanishing of the Wronskian at r-, implies the linear

dependence of h (t) and h2 (1)for all positiva and we have reached a

contradiction. 18

Thus we can only have

or

d, Y~) M0. 6.6.36

Consequently (cf. equation 6.6.26 and 6.6.27)

f, W~ 0, 6.6.37

el (x) o. 6.6.38

By repetitions of the above argument, we can also show
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that

0, 6.6.39

fn (Y) O, 6.6.4~o

and en () 0 6.6.

for all n and an ( ) = 0, 6.6.12

bn (Pr) 01O 6.6.43

and C 0 6.6.4

for n X Z.

In short we have the very desirable results that

Nr (fv ): ao0() + ,(Y') Sin 9, 6.6.45

N ', 0)= bo( i+ b, (W) Sin e, 6.6.46

and Nre = C, () COS 6. 6.6.47

If the shell is closed at the apex, the usual condition

imposed upon the stress resultants is that they be finite. 1 0 ' 1 1  The
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application of this condition to equation 6.6.23 results in

fo ( ) E o. 6.648

Next we observe that equation 6.6.28 has a regular singularity at 1= 0

Therefore, in the neighborhood of the apex, the most general solution of

6.6.28 takes the o18 19

d, R) -C, X S. n + C2 In (1) s.¥.-

+fl:O 6.6.49

where and C2 are constants of integration to be determined by the

known side constraints, n and t n are constants fixed by the relevant

recurrence relations, ml and m2 ( ml_? m,) are roots of the indicial

equation

MrI+4m +3 =0, 6.6.50

or m1 = 6.6.51

and M2 z -3. 6.6.52

To ensure finiteness at the apex, we must have

C=C2 =0 6.6.53
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that

dn (Y) 0, 6.6.39

fn (Y' ) -Os 6.6.40o

and en (br) 0 6.6.4 1

for all n and an ( 07 0, 6.6.)12

bn () 0, 6.6.43

and Cn, 0 6.6.4

for n .

In short we have the very desirable results that

Nr(',) = ao0(Y')+ a,(Y')Sin,9,, 6.6.h5

No (s 0)= bo ( )+ b, (e) sin 0, 6.6. 46

and Nre C, (1) Cos 0. 6.6.7

If the shell is closed at the apex, the usual condition

imposed upon the stress resultants is that they be finite. 0 '11 The
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and consequently

d, () n 6.6.54

e, (i) a 0, 6.6.55

and 0, () 0. 6.6.56

Repetitions of the above argument will lead to the con-

clusion that ah (1), bn ), c. d() , (), e () ,andfn(r) must also vanish

identically for n A L. We have again arrived at the very desirable

results that

Nr (,9)" 0o ()t , (1) sin 0, 6.6.57

N. (1,)- b0 (r)+ b, ( ) sin g, 6.6.58

and

Nre (1,0) = c (Y) cos 0. 6.6.59

Thus the problem of the membrane stress resultants is

reduced to the ascertainment of solutions to the system of differential
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equations (6.6.4), (6.6.5), (6.6.7), (6.6.10) and (6.6.11). Equations

6.6.4 and 6.6.5 completely determine a0 (1) and b, (1) up to a constant of

integration. It should be observed that these are the portions of the

Nr and N9 induced by the axi-symmetric component of the load. This

axi-symmetric portion has the same dependence on Y except for a factor

cos j as was found earlier for the completely axi-symmetric behavior

(cf. equations 6.4.1h and 6.4.15).

Thus

00W 2fP 0 Cos 0, W1 + -Mr f912+fC'16.6.60

3r (y2 6.+6

and

bo(r') 2fpoh cos { 3 (I )l, [ ]66

where CI is a constant of integration to be determined by the side

condition of the shell.

The remaining three equations, 6.6.7, 6.6.10, 6.6.11, can

be reduced to the following three uncoupled equations
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(psF))2(1'2 011 4f,40h sin IV

6.6.62

-a,(#) {
14()fl-2i + 24~.h sin, }

6.6.63

gal' 1(1) {,+ at }

6.6.64

and we need only to solve the differential equation 6.6.62 to complete

the analysis of membrane stresses.

Observe that (6.6.62) can be rewritten as

_ Tr d _o inj

or

d,{~d ~ ~4poh sin
6.6.65

Thus
q- - 4f in V { ) + ca p}t

6.6.66
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()_3al C3 V)+ (I+(

____ 0 p~foo~h sini fC 4 + 2 -15 ~ 1}

6.6.67

and --V~i 3VT~'(+~1
,(1):-, ,0  r1 ( + Z r( 6.6.68

where C3 and 4 are coristants of integration.

b (1) and C can thea be computed with the help of equations (6.6.63)

ard (6.6 .64) to be

b ( ) = 2 f 0 h s i n 2 I , 7 r 1 6 .6 .6 9

¢, (1) =4Opoh sin" I iS 3-(2"1+-)36.6.70

Finally,, from (6.6.19), (6.6.20), and (6.6.21), we have

4fNpoficosk r J 0 (1092 _ __+ C,_.+ 3
-4f oh in CSP -Til+ C4 4 1+(0i2 + Sin(r)0)()3 15.1) 3  Sin ,

6.6.71
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N9 (,0) Zfpoh cos 1 -3)iiq .) C

+Zf,.o~~~k SihJ'C (1)'p~) [ 4 Cj) 2
+. + h + + 6.6.72

and

Nr U7,8)=,--poh Sin Or 2)(lz~/ C13 z - ' + _S os.

Nre 15(1' (1)3J CO

6.6.73

To determine the displacements, the stress-strain relations

(cf. equations 6.1.7, 6.1.8, 6.1.9) and the strain-displacement relations

(cf. equations 6.1.1, 6.1.2, 6.1.3) are combined to yield the following

0 0
set of partial differential equations for the displacements U. , UG and

W :

ar T-+ (Iz Eh LNr vNe]=2fVl+(4) 2 Er,
6.6.74

j*~**~**jUB O 0 2f IVTI -t
1+(1)2.Eh [N+ UNr]"2f IV'IiT Ee,

6.6.75



0Eh _-e U . ,Vi+
r-l 6.6.76

If the shell is closed at the apex or has a free edge, the

form of the solutions for the stress-resultants (of. equations 6.6.71,

6.6.72, 6.6.73) and boundary conditions on UO and UO (cf. equations

6.2.7 and 6.2.8) suggest that the solutions for the displacements should

take on the forms,

U ( , )=mo( ) . rn, (1) Sin 0, 6.6.77
0

U9 (Oe)= n, (Y) Cos 9, 6.6.78

w (,9 PO v#) + P, W Sin 0. 6.6.79

The proof goes through as that for the stress resultants. (cf. PP 33-37)

The higher harmonic terms which were omitted from equations

(6.6.77), (6.6.78) and (6.6.79) correspond to displacements without

straining the middle surface of the shell and are often referred to as

the inextensional deformations. Thus we my7 conclude that shells with

the given displacement conditions exhibit no inextensional deformations

(cf. page 7).

Equations (6.6.77) through (6.6.79) hold also for the case

where the shell is fixed tangentially at both edges. Here the inextensional
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deformtiouns must be of the form

tk si n noe
U rn (9) e) m n (9) too n af X +Cj i, 3 n n

4,(+cf in) * C3 C0 ne

t 005 no I

The constants Of integration C1 , C2 , C, and C4~ are to be determined by

the displacmmnt boundary conditions (6.2.1) through (6.2.4). Thus, ve have

Cf + )C f( 1 n) C,.f1(, n) +I* (, n) O 0

since No and n.~ ( i) axe linearly independent, the set of linear algebraic

equations for Cl1 , C2 , C3 and C~adits no non-trivial solutions.

Substitution of the expressions (6.6.77) through (6.6.79) into

the system of partial differential equations 6.6.74, 6.6.75 and 6.6.76

yields the following set of five ordinary differential] equations for

the five unkmown functions mnc, ml't n1 , p 0 and p, (prime indicate
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differentiation with respect to Z

frno" P 0  2f'41T+I Ee, 6.6.81

M / P, 2f '/1+ ) j'r (1, 668
m1 _____ 6.6.82

n 1+(,)Z n+ 1 m1 - pI R "+(j)2 1'9 6.6.83

o'n,-n, 1 +(11i m, -4TIYJ/1II' Ere 6.6.Th

where for convenience we have separated the middle surface strains into

components, defined as follows:

E? (Ce 6r (1) +6r( M 0, 6.6.85
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6.6.86

0 ()
O (cos 0.

6.6.87

It was noted, in a previous paragraph in this section, that the solutions

for the force-resultants Nr and No contained an axi-symmetric portion

identical in form (except for a multiplicative factor of COS *) to the

solutions determined in section 6.4. Thus the results of section 6.4,

can be used to determine the solutions for m (r) and p0 (r) ,the axi-

symmetric portions of the solutions for the displacements Ur and w

There results (compare equations 6.4.20, 6.4.18 with equations 6.6.81

and 6.6.82):
Af 7PO Cos 3/(

SW0'c1(1+& (ti I__+_4)J ( 6.

6.6.88
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4O1M2po COSJ (fX+ _ X2_L a

3 E Vi +-Q) W

1 1 6.6.89

where CI is the constant of integration arisen from the integration of

force equilibrium equation and C2 is an additional constant from the

integration of equation 6.6.80.

The three remaining equations, 6.6.82, 6.6.83, 6.6.84,

which determine the asymmetric component of the displacements can be

rearranged to yield

-+ r

6.6.90

6.6.91

P1 -Z'.f (1+N -)1 3  6~-t (1+()2) M.

6.6.92
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We can obtain the solution for nf by a simple, though

tedious, double quadrature

hr r11[If j P _ T .i,1, 1' + E r) at dl

+ C 7 - C 6.6.93

or n, (f) 4fpo sin { + C4 f2 ( ) + c 3 f1 (1) -t 3 ()

6.6.94

where

t,€ . -
)  (1+) [, ri (i)2(+In -,)-/1(*,],

6.6.95

(-iV) (fj)2 ,

6.6.96

M4 ~ 40 +ZLc I/) (1i-, + () 2,)(0-Z IV()j. (
2.40 o2.0

6.6.97

c5 and c6 are constants of integration.



By equations 6.6.91 and 6.6.83, we have also
f 2aSi CS(,2 c (

8 'f4 C3. (d)+C 4f s 1)-R =- + + " )6 (
_

)

6.6.98

and

C347 ( )i Cf.0 + c 1 ) , c, f( ( (20

6.6.99

where

6.6.100

fs_______)__ )-AlJF~ 2'1 u-i iL L)
6.6.101

f3___ _ _ F ____ (,.1) (,()) (40+29 )
((V' v - n30 15(03 Id 0)

2 ( +_ I (i-a) [14 (10 l + 1)-1 3/Z
(.0 2. ( )2

6.6.102

(1V' j(1)21

6.6.103
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+L f5 % I k d +M 2 ~2 f)11(i.)-Ali .. o6.6.1o

6.6.106

101

6.6.1o6

) - __ 2.15 is1)

6.6.107

Several different combinations of boundary conditions are

considered and numerical calculations have been made. It is evident

that a complete description of the deformed shell for each orientation

(i.e., each value of y ) would require an inordinate number of curves

and tables. In lieu of presenting such a mass of numerical data only

the anti-symmetric part of the solution has been presented ( )

The behavior of the shell for other values of 4 can be obtained by

appropriate combinations of the results for Y 0 and Y The

solutions for the force resultants and displacements can be cast into the

forms (see equations 6.6.19, 6.6.20, 6.6.21, 6.6.77. 6.6.78, 6.6.79,
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6.6.69, 6.6.70, 6.6.71, 6.6.72, 6.6.73, 6.6.94, 6.6.98, and 6.6.99),

r 2frh - c C + 04 , f ,e I 6.6.1o8

Ne= 27f b6C0 ~ L 3n 6.6.109

N, cI cosGe in' 6.6.ao

Eu6
U,"- 4f 2o 0 rn C05 W n M, 3ne-inV 6.6.111

= 1E_ ;51 ¢oe i 6.6.112

, E' = pe cos .,- . 1 n 5G ln~P • 6.6.113

Tbe a. * are the non-dimensionalized

symmetric parts of the solution.

it ~ 000o0 : f~o PO k 6.6.ni4

2fo h cos ,6.6.15

0 4fe2(o cos V 6.6.116

= Ervo 6.6.117

These have already been plotted in the previous sections

of this chapters for the case of 0 . . The other starred quantities

are the asymmetric part of the solution and are defined as follows:

= 6.6.18

2-f90h 1ir



b6* E 6, 6.6.119
2fpeh :i3n

C _ _ ____ _ 6.6.120
2 f hco ~

S n 6.6.121

* -i 6.6.122

4f
2 1 SM 

6.

The results which are presented in the following sections

are the above six functions for the case of i- . Thus, the results

represent the completely anti-symmetric behavior N r, N0, N re, -P L ,

and w . Additionally, it is seen that a , , f71 and -Pi represent

the stress resultants and displacements along the bottom vertical radius

C 6 ) whereas c1 and n1  representNre and LLe along the horizontal

radius (O=O). The values at other angular positions (i.e., other values

of Q) can be obtained by multiplying the given values by 5Wg or C05 G,
whichever is appropriate.

6.6.1 BOTH EDGES RESTRAINED IN THE TANGEmIAL DIRECTIONS

The condition of vanishing tangential displacements at the

edges requires that

Cat,(I,)c4+V(6,}+C5 T2 +C6 :f

6.6.1.1
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~6.6.1.2

C3,f ,_+ C,4* C 4d 6.61.4

2 ??-- X

ALI+1 (9) have been defined previously. The system of equations

(6.6.1.1) through (6.6.1.4) can be solved simultaneously for C3 , C4

c5 and C6 .

Six different cases have been analyzed and the results are

presented in curve form as well as in tabular form. It should be observed

that tangential displacements, as represented by m1 and nj , become of

the same order of magnitude as the normal displacement (represented by

) over a portion of the shell. This is in contrast to the symetric

behavior in which the tangential displacement is generally an order of

magnitude smaller than the normal displacement (see section 6.4). Also,

the largest value of P1 (which is W at 2 and Z= )is larger than

W for the symetric case (compare case 6.6.1.2 with 6.4.1.2 and case

6.6.1.4 with 6.4.1.4). This is a bit surprising until it is remembered

that the value of W at the boundaries is determined primarily by the

need to cc odate the membrane boundary conditions (see discussions in



sections 6.)a.9, 6.4.2, and 6.4.3).

Th 1.st of configurations 'which av, been snaysed m

presented in Table 6.6.1.

Table 6.6.1

Case Restrained at Iftstrained at4

6.6.1.1 .o&i .625o
6.6.1.2 .OlO .6250

6.6.1.3 .OlO .3
6.6.1.4 .3854 .625o

6.6.1.5 .o36 .799o
6.6.1.6 .0416 1.0243
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6.6.2 OU MlU 7M AND MU MMU RESTRAINN IN THE TAMM&A DIIRCTZC

We shal specify the free edge to be and the restrained

edge to be ) . The constants of integration are

c5 3 6.6.2.1

C4= C S- 4",)3i+r,)Zl"/Z 6.6.2.2

C6. (I,) 1 (4f6() + c, tf1(o~- vlx fS.)
NIC~Z4ZJJ f~' 6.6.2.3'

C(D 2

setin resumiarirzed inTbe6.6.2.1. The sawe discussion made in

etion 6.6.1 appmw ad no additional ccmmts are required.

Table 6.6.2.1

Case Free at 1 Restrained at

6.6.2.1 .01 .3 11.
6.6.2.2 .010 .625O

6.6.2.3 .0416 .625

6.6.2.4 .625o .3854

6.6.2.5 .0104 .9982

6.6.2.6 .1770 1.0243

6.6.2.7 .4010 1.0243
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6.6.3 THE smL is cLOSED AT THE APEX

The condition of inite stress resultants at the apex

requires that

C$ I 6.6.3.1

and -1
C4  " - 6.6.3.2

15
C5 and C6 can apin be obtained from equations (6.6.2.3) and (6.6.2.4).

The six configurations which have been analyzed in this

section are sumarized in Table 6.6.3.1, and the discussion of section

6.6.1 is applicable. No additional comments appear to be needed.

Table 6.6.3.1

Case Restrained at X

6.6.3.1 .2673
6.6.3.2 .3854

6.6.3.3 .5381
6.6.3.4 .6250

6.6.3.5 .8038

6.6.3.6 1.0243
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